Coumarins XIV: High-Resolution Mass Spectra of $3^{\prime}, 4^{\prime}$-Disubstituted $3^{\prime}, 4^{\prime}$-Dihydroseselins

NADIM A. SHAATH * TAITO O. SOINE ${ }^{\text {x }}$, and M. T. SHIPCHANDLER \ddagger

Abstract

High-resolution mass spectra of $143^{\prime}, 4^{\prime}$-disubstituted $3^{\prime}, 4^{\prime}$-dihydroseselins were examined. The nature of the substituents determines the mode of fragmentation. Compounds having one or two acyloxy substituents fragment mainly by a pathway leading to the stable coumarinopyrilium ion. Coumarins with alkoxy or hydroxy substituents proceed by way of fission of the chroman ring, accompanied by the loss of two ring carbon atoms. Several generalizations are formulated which will aid in the interpretation of the mass spectra of this class of coumarins from a structural standpoint.

Keyphrases $\quad 3^{\prime}, 4^{\prime}$-Dihydroseselins, $3^{\prime}, 4^{\prime}$-disubstituted-highresolution mass spectra, mode of fragmentation, structural interpretation Coumarins, substituted-high-resolution mass spectra, mode of fragmentation, structural interpretation \square Mass spectroscopy, high resolution- $3^{\prime}, 4^{\prime}$-disubstituted $3^{\prime}, 4^{\prime}$-dihydroseselins, mode of fragmentation, structural interpretation

In earlier mass spectral studies, fragmentation patterns of several linear furano- (1), angular dihydrofur-ano-, and dihydropyranocoumarins (2-5) were examined. As an extension of these studies, high-resolution mass spectra of $143^{\prime}, 4^{\prime}$-disubstituted $3^{\prime}, 4^{\prime}$-dihydroseselins (I-XIV, Table I) were examined. The examples selected provide the data needed to give substance to certain general fragmentation pathways based on the structural types examined. These pathways are supported by exact mass measurements and provide some interesting generalizations which may be of value for the structural elucidation of coumarins.

DISCUSSION

Two major routes of fragmentation were evident.
Pathway A-This process involves loss of ROH in one or two steps, i.e., loss of RO followed by H., to generate a chromene system followed by a $\cdot \mathrm{CH}_{3}$ expulsion to provide a stable coumarinopyrilium ion (6) (Scheme I). Subsequent fragmentations take place without destruction of this stable ring system. This mode of fragmentation is of major consequence in the spectra of esters of lomatin but is of minor consequence for lomatin itself (4).

Pathway B-Fission of the chroman ring with the loss of two ring carbons (2^{\prime} and 3^{\prime}) along with their respective substituents is an alternative mode of fragmentation (7) (Scheme II). This retro Diels-Alder-type fragmentation occurs with or without a hydrogen transfer and constitutes the principal mode of fragmentation (with one and/or two hydrogen transfers) in the spectrum of lomatin $(4,8)$.

The group behavior was as follows.
Group 1-Anomalin (I) and calipteryxin (II) exhibit similar spectra (Table I) with no molecular ion (M^{+}), presumably because the bulkiness of both substituents renders them unstable ${ }^{1}$. The base peak at $m / e 83$ is derived from the angeloyl and/or senecioyl groups. Pathway A is the major fragmentation route. Scheme III shows the major fragmentation routes of I as an example. Bohlmann and coworkers $(9,10)$ reported the mass spectra of several compounds that could be classified in Group 1, and their fragmentation conforms to pathway A expectations.
Groups 2-4-Compounds III-VII exhibit moderately intense molecular ion peaks and fragment predominantly via pathway A. Compounds III and IV exhibit base peaks at $m / e 83$ due to the relatively stable ion derived from the unsaturated five-carbon acid sub-

[^0]
Scheme I-Pathway A

Scheme II-Pathway B

Scheme III

stituents. The base peak appears at $m / e 229$ when one substituent is a saturated five-carbon acyloxy group and the other is an acetoxy group, as in the spectra of V and VI. This is also true when both substituents are acetoxy groups, as in VII.

An M - 60 peak due to the loss of acetic acid is present in the spectrum of pteryxin (III) (Scheme IV) but not in the spectrum for isopteryxin (IV) (Scheme V); this difference indicates that the loss of the 3^{\prime}-substituent (as the acid) is preferred over the loss of the 4^{\prime}-substituent. In addition, the loss of five-carbon acids seems to be favored over the loss of acetic acid. Similar conclusions are reached when the spectra of suksdorfin (V) (Scheme VI) and visnadin (VI) (Scheme VII) are compared. These two observations permit differ-

Table I—High-Resolution Mass Measurements of the Major Fragments for Compounds I-XIV a

Compound	R_{1}	R_{2}	m / e	Elemental Composition	Calculated Mass	Measured Mass	Relative Intensity, \%
$\underset{\text { (I) }}{\text { Anomalin } b}$			327	$\mathrm{C}_{19} \mathrm{H}_{1} 9 \mathrm{O}_{5}$	327.1232	327.1198	28
			326	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{H}^{5} \mathrm{O}_{5}$	326.1153	326.1157	12
			311	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{5}$	311.0918	311.0904	15
			244	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$	244.0735	244.0741	9
			243	$\mathrm{C}_{14} \mathrm{H}_{1}^{12} \mathrm{O}_{4}$	243.0657	243.0678	7
			229	$\mathrm{C}_{13} \mathrm{H}_{3} \mathrm{O}_{4}$	229.0500	229.0449	32
			83 (P)	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}^{\text {O }}$	83.0496	83.0493	100
Calipteryxin ${ }^{b}$ (II)			55 327	$\mathrm{C}_{4} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{H}_{19} \mathrm{O}_{5}$	55.0546 327.1232	55.0538 327.1269	40 6
			326	$\mathrm{C}_{19}^{19} \mathrm{H}_{18}^{19} \mathrm{O}_{5}^{5}$	326.1153	326.1150	16
			311	$\mathrm{C}_{18}^{19} \mathrm{H}_{15}^{18} \mathrm{O}_{5}^{5}$	311.0918	311.0910	10
			244	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}^{5}$	244.0735	244.0728	8
			243	$\mathrm{C}_{14}{ }^{4} \mathrm{H}_{1} \mathrm{O}^{12} \mathrm{O}_{4}$	243.0657	243.0644	6
			229	$\mathrm{C}_{13}{ }^{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{4}$	229.0500	229.0505	28
			83 (P)	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}$	83.0496	83.0500	100
			55	$\mathrm{C}_{4} \mathrm{H}_{2}$	55.0546	55.0549	30
Pteryxinc (III)	$\mathrm{CH}_{3} \mathrm{CO}$		${ }_{326} \mathbf{3 8}$ (M)	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{H}_{7}$	$\begin{aligned} & 386.1364 \\ & 326.1153 \end{aligned}$	$\begin{aligned} & 386.1400 \\ & 3271200 \end{aligned}$	${ }^{6}$
			311	$\mathrm{C}_{18}^{19} \mathrm{H}_{15}^{18} \mathrm{O}_{5}^{5}$	311.0918	311.0927	14
			287	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{5}^{5}$	287.0919	287.0879	42
			261	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{5}^{5}$	261.0762	261.0746	28
			245	$\mathrm{C}_{14}{ }^{14} \mathrm{H}_{13}^{13} \mathrm{O}_{4}^{5}$	245.0813	245.0751	46
			244	$\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{H}^{3} \mathrm{O}_{4}$	244.0735	244.0738	98
			191	$\mathrm{C}_{1}{ }_{1} \mathrm{H}_{9} \mathrm{O}_{4}^{4}$	191.0343	191.0343	5
			83 (P)	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}^{4}$	83.0496	83.0502	100
			55	$\mathrm{C}_{4} \mathrm{H}_{7}{ }^{\text {c }}$	55.0546	55.0547	40
			43	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$	43.0284	43.0276	26
$\begin{aligned} & \text { Isopteryxin } b \\ & \text { (IV) } \end{aligned}$		$\mathrm{CH}_{3} \mathrm{CO}$	386 (M)	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}$	386.1364 326.1153	386.1348	22
			326 311	$\mathrm{C}_{19} \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{H}_{18} \mathrm{O}_{5}{ }_{5}$	326.1153 311.0918	-	
			287	$\mathrm{C}_{16}^{18} \mathrm{H}_{15}^{15} \mathrm{O}_{5}^{5}$	287.0919	287.0869	6
			261	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{5}^{5}$	261.0762	261.0762	5
			245	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}$ -	245.0813	245.0688	24
			244	$\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{O}_{4}$	244.0735	244.0724	34
			229	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{4}$	229.0500	229.0532	72
			191 (P)	$\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$	191.0343	191.0334	18
			83 (P)	$\mathrm{C}_{5} \mathrm{C}_{5} \mathrm{H}^{2} \mathrm{O}$	83.0496	83.0487 55.0539	100 44
			43	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{7}$	43.0284	43.0290	26
Suksdorfin ${ }^{c}$ (V)	$\mathrm{CH}_{3} \mathrm{CO}$		388 (M)	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}$	388.1520	388.1524	22
			328	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$	328.1309	328.1322	16
			313	$\mathrm{C}_{18} \mathrm{H}_{1}{ }_{7} \mathrm{O}_{5}$	313.1074	313.1067	12
			${ }_{261}^{286}$	$\mathrm{C}_{1}^{\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{H}_{4} \mathrm{O}_{5}}$	286.0840 261.0762	261.0756	21
			245	$\mathrm{C}_{14}{ }_{4} \mathrm{H}_{13} \mathrm{O}_{4}^{5}$	245.0813	245.0787	25
			244	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$	244.0735	244.0731	48
			229 (P)	$\mathrm{C}_{13}{ }^{4} \mathrm{H}_{9} \mathrm{O}_{4}$	229.0500	229.0527	100
			191	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{4}$	191.0343	191.0325	18
			190	$\mathrm{Cin}_{1} \mathrm{H}_{4} \mathrm{O}_{4}$	190.0265	190.0286	12
			85	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}$	85.0653	85.0654	22
			57	$\mathrm{C}_{4} \mathrm{H}$	57.0702	57.0704	26
			388 (M)	$\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$	43.0284 388.1520	43.0288 388.1540	26 12
$\begin{aligned} & \text { Visnadin (pro- } \\ & \text { vismine)d } \\ & (\mathrm{VI}) \end{aligned}$		$\mathrm{CH}_{3} \mathrm{CO}$	${ }_{328}^{388}$ (M)	$\mathrm{C}_{21} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{H}_{2} \mathrm{O}_{5}$	388.1520 328.1309	388.1540	12
			313	$\mathrm{C}_{18}^{19} \mathrm{H}_{1}^{20} \mathrm{O}_{5}^{5}$	313.1074		
			286	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$	286.0840	286.0831	5
			261	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{5}$	261.0762	261.0746	13
			245	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}$	245.0813	245.0766	10
			244 (P)	$\mathrm{C}_{14}{ }_{4} \mathrm{H}_{13} \mathrm{O}_{4}$	244.0735 229.0500	244.0720	65 100
			191	$\mathrm{C}_{10}{ }^{13} \mathrm{H}_{7} \mathrm{O}_{4}^{4}$	191.0343	191.0329	25
			190	$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{4}$	190.0265	190.0245	22
			85	$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}$	85.0653	85.0653	26
			57	$\mathrm{C}_{4} \mathrm{H}_{5}{ }^{\text {c }}$	57.0702	57.0701	28
			43	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$	43.0284	43.0289	26
trans-Khellactone diacetate ${ }^{d}$ (VII)	$\mathrm{CH}_{3} \mathrm{CO}$	$\mathrm{CH}_{3} \mathrm{CO}$	346 (M)	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7}$	346.1052	346.1056	18
			286	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$	286.0840	286.0847	5
			245	$\mathrm{C}_{14}{ }_{4} \mathrm{H}_{1}{ }^{3} \mathrm{O}_{4}^{4}$	245.0813	245.0779	10
			229 (P)	$\mathrm{C}_{13}^{14} \mathrm{H}_{9} \mathrm{O}_{4}{ }_{4}$	229.0500	229.0514	100
			213	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{3}$	213.0551	213.0547	20
			191	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{4}$	191.0343	191.0346	26
			190	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4}$	190.0265	190.0272	14

Table I-(Continued)

a Fragments with a relative abundance of less than 5% of the parent peak were not considered. b Reference 12 . c Reference 13 , d Reference 14. ${ }^{e}$ The accurate mass measurements for XI and XIII are not included. The relative intensities of the low-resolution peaks as compared to X and XII, respectively, were almost identical and, therefore, are not included.
entiation of positional isomers, a problem frequently encountered in this class of coumarins. Obviously, when the diacetate (VII) fragments (Scheme VIII), it is impossible to tell which acetoxy group is eliminated, although one would suggest loss of the 3^{\prime}-moiety by analogy to V and VI.

It is also of interest to compare the spectra of Group 1 and 2 compounds with those of Group 3. In this case, peaks due to the loss of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{COO}$ - are present in the spectra of I-IV but not in the spectra of V and VI. Das et al. (11) reported fragmentation patterns for visnadin (VI) that are in accord with the results of this study.

Group 5-Pathways A and B seem to be equally important in the spectra of VIII and IX. The presence of an acetoxy group apparently
is necessary for the observation of Pathway A (Scheme IX). Only small differences in peak height are observed in the spectra of VIII and IX.

Groups 6 and 7-Compounds X-XIV exhibit sizable molecular ion peaks, although ethers X-XIII also exhibit $\mathbf{M}^{+}+1$ peaks. Pathway A seems to be of little or no consequence (Schemes X-XII). A stepwise loss of carbon monoxide, characteristic of coumarins, was observed from Pathway B fragmentation.

The following generalizations will aid in the interpretation of the mass spectra of this class of coumarins and, hopefully, will lead to the effective use of these results in the structural elucidation of unknown coumarins.

1. All compounds exhibit M^{+}, except when R_{1} and R_{2} are both

Pathway A

Pathway B
Pathway A

Scheme V

Scheme VI
Pathway B
Pathway A

Scheme VII
bulky (Group 1).
2. When R_{2} is an alkoxy group, characteristic $\mathbf{M}^{+}+1$ peaks appear.
3. Pathway A predominates when both substituents are acyloxy groups (Groups 1-4).
4. Pathway B predominates in compounds with hydroxy and
alkoxy functions and no acyloxy substituent.
5. Pathways A and B are of equal importance when one substituent is an acyloxy function (e.g., Group 5).
6. Loss of a 3^{\prime}-acyloxy substituent is preferred over loss of a 4^{\prime} acyloxy moiety.
7. Loss of five-carbon acids is more facile than loss of acetic acid.

Pathway A

Scheme VIII

Scheme IX

Scheme X
8. Loss of an unsaturated five-carbon acyloxy substituent occurs more readily than loss of a corresponding five-carbon saturated analog.
9. The acyloxy substituents give rise to their respective characteristic peaks. For example, angelates and/or senecioates show peaks at $m / e 83$ and 55 , isovalerates and α-methylbutyrates show peaks at

Scheme XI

$m / e 85$ and 57 , and acetates show a peak at $m / e 43$.
10. No significant differences are observed in the spectra of cisand trans-isomers.

EXPERIMENTAL

Materials-Compounds I-XIV were available from previous studies (12-14).

Mass Spectra ${ }^{2}$-The mass spectrometer was operated at an ionizing voltage of 70 ev , a source temperature of 200°, and an unheated direct inlet. Perfluorokerosene was used as the internal standard.

REFERENCES

(1) K. H. Lee and T. O. Soine, J. Pharm. Sci., 57, 865(1968).
(2) M. Shipchandler and T. O. Soine, ibid., 57, 741(1968).
(3) Ibid., 57, 747(1968).

[^1](4) Ibid., 57, 2062(1968).
(5) M. Shipchandler, T. O. Soine, and P. K. Gupta, J. Pharm. Sci., 59, 67(1970).
(6) C. S. Barnes and J. L. Occolowitz, Aust. J. Chem., 17, 975(1964).
(7) B. Willhalm, A. F. Thomas, and F. Gautchi, Tetrahedron, 20, 1185(1964).
(8) T. Seshadri, M. S. Sood, K. H. Handa, and Vishwapaul, ibid., 23, 1883(1967).
(9) F. Bohlmann and K. M. Rode, Chem. Ber., 101, 2741(1968).
(10) F. Bohlmann and W. Thefeld, Tetrahedron Lett., 41, 3577(1970).
(11) K. G. Das, A. Bose, C. Mesta, S. Shanbhag, M. Meheshwari, and S. C. Battacharyya, Indian J. Chem., 7, 132(1969).
(12) B. E. Nielsen and T. O. Soine, J. Pharm. Sci., 56, 184(1967).
(13) R. E. Willette and T. O. Soine, ibid., 51, 149(1962).
(14) E. Smith, N. Hosansky, W. G. Bywater, and E. E. Van Tamelen, J. Am. Chem. Soc., 79, 3534(1957).

ACKNOWLEDGMENTS AND ADDRESSES

Received July 17, 1975, from the Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455

Accepted for publication September 12, 1975.

* Present address: Division of Natural Sciences, State University of New York, College at Purchase, Purchase, NY 10577
${ }^{1}$ Present address: Research Department, Commercial Solvents Corporation, Terre Haute, IN 47802
${ }^{\mathrm{x}}$ To whom inquiries should be directed.

[^0]: ${ }^{1}$ These peaks were visible at 15 ev .

[^1]: ${ }^{2}$ Determined by Dr. N. Shaath and Dr. R. Upham, Mass Spectrometry Laboratory, Department of Chemistry, University of Minnesota, employing an AEI MS30 high-resolution mass spectrometer. Preliminary mass spectral data were obtained using a Hitachi Perkin-Elmer RMU-6D mass spectrometer.

