Coumarins XIV: High-Resolution Mass Spectra of 3',4'-Disubstituted 3',4'-Dihydroseselins

NADIM A. SHAATH *, TAITO O. SOINE *, and M. T. SHIPCHANDLER \ddagger

Abstract □ High-resolution mass spectra of 14 3',4'-disubstituted 3',4'-dihydroseselins were examined. The nature of the substituents determines the mode of fragmentation. Compounds having one or two acyloxy substituents fragment mainly by a pathway leading to the stable coumarinopyrilium ion. Coumarins with alkoxy or hydroxy substituents proceed by way of fission of the chroman ring, accompanied by the loss of two ring carbon atoms. Several generalizations are formulated which will aid in the interpretation of the mass spectra of this class of coumarins from a structural standpoint.

Keyphrases $\exists 3',4'$ -Dihydroseselins, 3',4'-disubstituted—highresolution mass spectra, mode of fragmentation, structural interpretation \Box Coumarins, substituted—high-resolution mass spectra, mode of fragmentation, structural interpretation \Box Mass spectroscopy, high resolution—3',4'-disubstituted 3',4'-dihydroseselins, mode of fragmentation, structural interpretation

In earlier mass spectral studies, fragmentation patterns of several linear furano- (1), angular dihydrofurano-, and dihydropyranocoumarins (2-5) were examined. As an extension of these studies, high-resolution mass spectra of 14 3',4'-disubstituted 3',4'-dihydroseselins (I-XIV, Table I) were examined. The examples selected provide the data needed to give substance to certain general fragmentation pathways based on the structural types examined. These pathways are supported by exact mass measurements and provide some interesting generalizations which may be of value for the structural elucidation of coumarins.

DISCUSSION

Two major routes of fragmentation were evident.

Pathway A—This process involves loss of ROH in one or two steps, *i.e.*, loss of RO· followed by H·, to generate a chromene system followed by a ·CH₃ expulsion to provide a stable coumarinopyrilium ion (6) (Scheme I). Subsequent fragmentations take place without destruction of this stable ring system. This mode of fragmentation is of major consequence in the spectra of esters of lomatin but is of minor consequence for lomatin itself (4).

Pathway B—Fission of the chroman ring with the loss of two ring carbons (2' and 3') along with their respective substituents is an alternative mode of fragmentation (7) (Scheme II). This retro Diels– Alder-type fragmentation occurs with or without a hydrogen transfer and constitutes the principal mode of fragmentation (with one and/or two hydrogen transfers) in the spectrum of lomatin (4, 8).

The group behavior was as follows.

Group 1—Anomalin (I) and calipteryxin (II) exhibit similar spectra (Table I) with no molecular ion (M^+) , presumably because the bulkiness of both substituents renders them unstable¹. The base peak at m/e 83 is derived from the angeloyl and/or senecioyl groups. Pathway A is the major fragmentation route. Scheme III shows the major fragmentation routes of I as an example. Bohlmann and coworkers (9, 10) reported the mass spectra of several compounds that could be classified in Group 1, and their fragmentation conforms to pathway A expectations.

Groups 2-4—Compounds III-VII exhibit moderately intense molecular ion peaks and fragment predominantly *via* pathway A. Compounds III and IV exhibit base peaks at m/e 83 due to the relatively stable ion derived from the unsaturated five-carbon acid sub-

group, as in the spectra of V and VI. This is also true when both substituents are acetoxy groups, as in VII. An M – 60 peak due to the loss of acetic acid is present in the spectrum of pteryxin (III) (Scheme IV) but not in the spectrum for isopteryxin (IV) (Scheme V); this difference indicates that the loss of the 3'-substituent (as the acid) is preferred over the loss of the 4'-substituent. In addition, the loss of five-carbon acids seems to be favored over the loss of acetic acid. Similar conclusions are reached when the spectra of suksdorfin (V) (Scheme VI) and visnadin (VI) (Scheme VII) are compared. These two observations permit differ-

Scheme III

stituents. The base peak appears at m/e 229 when one substituent is

a saturated five-carbon acyloxy group and the other is an acetoxy

 $[C_4H_7]^{\dagger}$

55

¹ These peaks were visible at 15 ev.

OR_1 OR_2

Tuble 1 Then resolution mass measurements of the major reacting for Compounds 1-2114
--

Compound	R ₁	R ₂	m/e	Elemental Composition	Calculated Mass	Measured Mass	Relative Intensity, %
Anomalin ^b (I)	\checkmark	\checkmark^{∞}	327 326 311 244 243 229 83 (P)	C ₁ ,H ₁ ,O ₅ C ₁ ,H ₁ ,BO ₅ C ₁ ,H ₁ ,BO ₅ C ₁ ,H ₁ ,O ₅ C ₁ ,H ₁ ,O ₄ C ₁ ,H ₁ ,O ₄ C ₁ ,H ₂ ,O ₄	$\begin{array}{r} 327.1232\\ 326.1153\\ 311.0918\\ 244.0735\\ 243.0657\\ 229.0500\\ 83.0496\end{array}$	$\begin{array}{r} 327.1198\\ 326.1157\\ 311.0904\\ 244.0741\\ 243.0678\\ 229.0449\\ 83.0493\end{array}$	$28 \\ 12 \\ 15 \\ 9 \\ 7 \\ 32 \\ 100$
Calipteryxin ^b (II)	\CO	\succ^{co}	55 327 326 311 244 243 229 83 (P)	C ² H ² , C ¹ 9H ¹ 9O ₅ C ¹ 9H ¹ 8O ₅ C ¹ 8H ¹ 5O ₅ C ¹ 4H ¹ 2O ₄ C ¹ 4H ¹ 1O ₄ C ¹ 2H ₂ O ₄ C ¹ 2H ₂ O ₄	$\begin{array}{c} 55.0546\\ 327.1232\\ 326.1153\\ 311.0918\\ 244.0735\\ 243.0657\\ 229.0500\\ 83.0496\end{array}$	$\begin{array}{r} 55.0538\\ 327.1269\\ 326.1150\\ 311.0910\\ 244.0728\\ 243.0644\\ 229.0505\\ 83.0500\\ \end{array}$	$ \begin{array}{r} 40 \\ 6 \\ 16 \\ 10 \\ 8 \\ 6 \\ 28 \\ 100 \\ \end{array} $
Pteryxin ^c (III)	CH3CO	\checkmark	55 386 (M) 326 311 287 261 245 244 229 191 83 (P) 55	C ⁴ H ² ₁ C ¹ H ² ₂ O ⁷ C ¹ H ¹ SO ⁵ C ¹ H ¹ SO ⁴ C ¹ H ¹ O ⁴ C ¹ H ² O ⁴ C ⁴ H ² O ⁴ C ⁴ H ² O ⁴	$\begin{array}{r} 55.0546\\ 386.1364\\ 326.1153\\ 311.0918\\ 287.0919\\ 261.0762\\ 245.0813\\ 244.0735\\ 229.0500\\ 191.0343\\ 83.0496\\ 55.0546\end{array}$	$\begin{array}{r} 55.0549\\ 386.1400\\ 327.1200\\ 311.0927\\ 287.0879\\ 261.0746\\ 245.0751\\ 244.0738\\ 229.0467\\ 191.0343\\ 83.0502\\ 55.0547\end{array}$	$30\\6\\14\\14\\42\\28\\46\\9\\38\\5\\100\\40$
Isopteryxin ^b (IV)	\searrow^{∞}	СН3СО	43 386 (M) 326 311 287 261 245 244 229 191 83 (P) 55	C ₂ H ₂ O C ₂₁ H ₂₂ O ₅ C ₁₉ H ₁₈ O ₅ C ₁₈ H ₁₅ O ₅ C ₁₄ H ₁₃ O ₅ C ₁₄ H ₁₃ O ₅ C ₁₄ H ₁₃ O ₄ C ₁₃ H ₁ O ₄ C ₁₃ H ₁ O ₄ C ₁₆ H ₁ O C ₁₆ H ₁ O	$\begin{array}{r} 43.0284\\ 386.1364\\ 326.1153\\ 311.0918\\ 287.0919\\ 261.0762\\ 245.0813\\ 244.0735\\ 229.0500\\ 191.0343\\ 83.0496\\ 55.0546\\ 55.0546\end{array}$	$\begin{array}{c} 43.0276\\ 386.1348\\\\ 287.0869\\ 261.0762\\ 245.0688\\ 244.0724\\ 229.0532\\ 191.0334\\ 83.0487\\ 55.0539\\\\ 55.0539\end{array}$	$ \begin{array}{c} 26\\ 22\\\\ 6\\ 5\\ 24\\ 34\\ 72\\ 18\\ 100\\ 44\\ 6\end{array} $
Suksdorfin ^c (V)	CH3CO		43 388 (M) 328 313 286 261 245 244 229 (P) 191 190 85 57	C ₁ H ₁ A ₂ O ₇ C ₁ H ₁ A ₂ O ₇ C ₁ H ₁ A ₂ O ₅ C ₁ #H ₁ O ₇ C ₁ #H ₁ O ₅ C ₁ +H ₁ O ₅ C ₁ +H ₁ O ₅ C ₁ +H ₁ O ₄ C ₁ H ₁ O ₄	$\begin{array}{r} 43.0284\\ 388.1520\\ 328.1309\\ 313.1074\\ 286.0840\\ 261.0762\\ 245.0813\\ 244.0735\\ 229.0500\\ 191.0343\\ 190.0265\\ 85.0653\\ 57.0702\\ 57.0$	$\begin{array}{r} 43.0290\\ 388.1524\\ 328.1322\\ 313.1067\\ 286.0829\\ 261.0756\\ 245.0787\\ 244.0731\\ 229.0527\\ 191.0325\\ 190.0286\\ 85.0654\\ 57.0704\\ 57.0704\end{array}$	$\begin{array}{c} 26\\ 22\\ 16\\ 12\\ 11\\ 25\\ 48\\ 100\\ 18\\ 12\\ 22\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 2$
Visnadin (pro- vismine) ⁴ (VI)	\prec^{∞}	CH3CO	43 388 (M) 328 313 286 261 245 244 229 (P) 191 190 85 57	C ¹ / ₁ , 20 C ¹ ,	$\begin{array}{r} 43.0284\\ 388.1520\\ 328.1309\\ 313.1074\\ 286.0840\\ 261.0762\\ 245.0813\\ 244.0735\\ 229.0500\\ 191.0343\\ 190.0265\\ 85.0653\\ 57.0702\\ 57.0702\end{array}$	$\begin{array}{r} 43.0288\\ 388.1540\\\\ 286.0831\\ 261.0746\\ 245.0766\\ 244.0720\\ 229.0464\\ 191.0329\\ 190.0245\\ 85.0653\\ 57.0701\\\\ 56.0653\\ 57.0701\\\\ 56.0653\\ 57.0701\\\\ 56.0653\\\\ 57.0701\\\\ 56.0653\\\\ 56.065$	$ \begin{array}{c} 26\\ 12\\\\ 5\\ 13\\ 10\\ 65\\ 100\\ 25\\ 22\\ 26\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28$
<i>trans-</i> Khellactone diacetate ^d (VII)	CH3CO	CH₃CO	43 346 (M) 286 245 244 229 (P) 213 191 190	$\begin{array}{c} C_{18}H_{18}O_{7}\\ C_{18}H_{18}O_{7}\\ C_{16}H_{14}O_{5}\\ C_{14}H_{12}O_{4}\\ C_{13}H_{9}O_{4}\\ C_{13}H_{9}O_{3}\\ C_{13}H_{9}O_{3}\\ C_{10}H_{7}O_{4}\\ \end{array}$	$\begin{array}{r} 43.0284\\ 346.1052\\ 286.0840\\ 245.0813\\ 244.0735\\ 229.0500\\ 213.0551\\ 191.0343\\ 190.0265\end{array}$	$\begin{array}{r} 43.0289\\ 346.1056\\ 286.0847\\ 245.0779\\ 244.0708\\ 229.0514\\ 213.0547\\ 191.0346\\ 190.0272\end{array}$	26 18 5 10 36 100 20 26 14

(continued)

Compound	R,	R ₂	m/e	Elemental Composition	Calculated Mass	Measured Mass	Relative Intensity, %
			60 43	$\begin{array}{c} C_2H_4O_2\\ C_2H_3O^2\end{array}$	60.0300 43.0284	60.0289 43.0282	30 35
cis-4'-O-Ethyl-	CH3CO	CH ₃ CH ₂	333 (M + 1)	$C_{18}H_{21}O_{6}$	333.1337	333.1358	7
acetate			332 (M) 258	$C_{18}H_{20}O_{6}$	332.1259 258 0891	332.1273	10
(VIII)			257 (P)	C. H. O.	257.0813	257.0806	100
(****)			245	C, H, O	245.0813	245.0835	5
			229	C ₁₃ H,O	229.0500	229.0483	52
			219	$C_{12}H_{11}O_{4}$	219.0657	219.0663	26
			218	$C_{12}H_{10}O_{4}$	218.0579	218.0562	43
			191	C_1HO_1	191 0343	191 0346	14 65
			190	Č, H, O,	190.0265	190.0248	48
			176	$C_{19}H_8O_3$	176.0473	176.0454	12
			162	C,H,O,	162.0316	162.0307	57
			134		134.0367	134.0369	36
trans-4'-O-Ethyl-	CH.CO	CH.CH.	333 (M + 1)	C. H. O.	333 1337	333 1349	30 5
khellactone	,	2	332 (M)	Č, H, O,	332.1259	332.1252	30
acetate ^c			258	$C_{15}H_{14}O_{4}$	258.0891	258.0878	15
(IX)			257 (P)	$C_{15}H_{13}O_{4}$	257.0813	257.0852	100
			240	$C_{14}H_{13}O_{4}$	245.0813	245.0809	
			219	C. H. O.	219.0657	219.0617	42
			218	C ₁₂ H ₁₀ O	218.0579	218.0584	82
			213	C ₁₃ H,O,	213.0551	213.0537	24
			191	$C_{10}H,O$	191.0343	191.0334	$\frac{72}{2}$
			176		190.0265	190.0261	55
			162	C.H.O.	162.0316	162 0319	92
			134	Č,H,O,	134.0367	134.0361	40
ois A' O Matheal		011	43	C,H,O	43.0284	43.0277	30
khellactone ^C (X)	н	CH_3	277 (M + 1) 276 (M)	$C_{15}H_{17}O_{5}$	277.1075	277.1044	8
knellactone ^{c, e} (XI)	н	CH.	229	C''H'D'	276.0997	276.1017	44
		0113	205 (P)	C. H.O.	205.0500	205.0507	100
			204	C, H, O,	204.0422	204.0424	66
			189	C ₁₀ H ₅ O ₄	189.0187	189.0178	30
			176	$C_{10}H_{8}O_{3}$	176.0473	176.0443	20
			161	C'HO'	161 0238	175.0357	8 16
			77	Č,H,	77.0391	77.0393	8
via 41 O Etheral		ATT ATT	73	C,HO	73.0653	73.0671	14
cls-4 -O-Ethyl-	н	CH ₃ CH ₂	291 (M + 1)	$C_{16}H_{1}O_{5}$	291.1231	291.1218	10
trans-4'-O-Ethyl-	н	CH.CH.	290 (M) 219		290.1153	290.1178	43
khellactone ^{c, e}		01130112	218 (P)	CHO.	218.0579	218.0579	100
(XIII)			203 `´	C ₁₃ H ₀ O ₃	203.0551	203.0562	8
			191	C ₁₀ H ₇ O ₄	191.0343	191.0353	74
			190	C ¹⁰ H ₆ O ₄	190.0265	190.0273	41
			175		175.0475	175.0478	5
			162	Č, H, O, '	162.0316	162.0324	46
	TT		134	C ₈ H ₆ O ₂	134.0367	134.0378	15
(XIV)	п	н	262 (M)	C ₁ H ₁ O	262.0840	262.0840	15
			191 (P)	C.HO	192.0377	192.0388	12
			190	Č, HŽO.	190.0265	190.0255	16
			162	C,H,O,	162.0316	162.0311	17
			134	C ₈ H ₆ O ₂	134.0367	134.0377	1 <u>7</u>
			107	U,H,U	107.0496	107.0492	7

Table I—(Continued)

^a Fragments with a relative abundance of less than 5% of the parent peak were not considered. ^bReference 12. ^cReference 13. ^dReference 14. ^eThe accurate mass measurements for XI and XIII are not included. The relative intensities of the low-resolution peaks as compared to X and XII, respectively, were almost identical and, therefore, are not included.

entiation of positional isomers, a problem frequently encountered in this class of coumarins. Obviously, when the diacetate (VII) fragments (Scheme VIII), it is impossible to tell which acetoxy group is eliminated, although one would suggest loss of the 3'-moiety by analogy to V and VI.

It is also of interest to compare the spectra of Group 1 and 2 compounds with those of Group 3. In this case, peaks due to the loss of $C_{4}H_{7}COO$ are present in the spectra of I-IV but not in the spectra of V and VI. Das *et al.* (11) reported fragmentation patterns for visnadin (VI) that are in accord with the results of this study.

Group 5—Pathways A and B seem to be equally important in the spectra of VIII and IX. The presence of an acetoxy group apparently

is necessary for the observation of Pathway A (Scheme IX). Only small differences in peak height are observed in the spectra of VIII and IX.

Groups 6 and 7—Compounds X-XIV exhibit sizable molecular ion peaks, although ethers X-XIII also exhibit $M^+ + 1$ peaks. Pathway A seems to be of little or no consequence (Schemes X-XII). A stepwise loss of carbon monoxide, characteristic of coumarins, was observed from Pathway B fragmentation.

The following generalizations will aid in the interpretation of the mass spectra of this class of coumarins and, hopefully, will lead to the effective use of these results in the structural elucidation of unknown coumarins.

1. All compounds exhibit M^+ , except when R_1 and R_2 are both

bulky (Group 1).

2. When R_2 is an alkoxy group, characteristic $M^+ + 1$ peaks appear.

3. Pathway A predominates when both substituents are acyloxy groups (Groups 1–4).

4. Pathway B predominates in compounds with hydroxy and

alkoxy functions and no acyloxy substituent.

5. Pathways A and B are of equal importance when one substituent is an acyloxy function (e.g., Group 5).

6. Loss of a 3'-acyloxy substituent is preferred over loss of a 4'acyloxy moiety.

7. Loss of five-carbon acids is more facile than loss of acetic acid.

8. Loss of an unsaturated five-carbon acyloxy substituent occurs more readily than loss of a corresponding five-carbon saturated analog.

9. The acyloxy substituents give rise to their respective characteristic peaks. For example, angelates and/or senecioates show peaks at m/e 83 and 55, isovalerates and α -methylbutyrates show peaks at

Scheme XI

m/e 85 and 57, and acetates show a peak at m/e 43.

10. No significant differences are observed in the spectra of cisand *trans*-isomers.

EXPERIMENTAL

Materials---Compounds I-XIV were available from previous studies (12-14).

Mass Spectra²—The mass spectrometer was operated at an ionizing voltage of 70 ev, a source temperature of 200°, and an unheated direct inlet. Perfluorokerosene was used as the internal standard.

REFERENCES

(1) K. H. Lee and T. O. Soine, J. Pharm. Sci., 57, 865(1968).

(2) M. Shipchandler and T. O. Soine, *ibid.*, 57, 741(1968).

(3) Ibid., 57, 747(1968).

² Determined by Dr. N. Shaath and Dr. R. Upham, Mass Spectrometry Laboratory, Department of Chemistry, University of Minnesota, employing an AEI MS30 high-resolution mass spectrometer. Preliminary mass spectral data were obtained using a Hitachi Perkin-Elmer RMU-6D mass spectrometer. (4) Ibid., 57, 2062(1968).

(5) M. Shipchandler, T. O. Soine, and P. K. Gupta, J. Pharm. Sci., 59, 67(1970).

(6) C. S. Barnes and J. L. Occolowitz, Aust. J. Chem., 17, 975(1964).

(7) B. Willhalm, A. F. Thomas, and F. Gautchi, Tetrahedron, 20, 1185(1964).

(8) T. Seshadri, M. S. Sood, K. H. Handa, and Vishwapaul, *ibid.*, 23, 1883(1967).

(9) F. Bohlmann and K. M. Rode, Chem. Ber., 101, 2741(1968).
(10) F. Bohlmann and W. Thefeld, Tetrahedron Lett., 41, 3577(1970).

(11) K. G. Das, A. Bose, C. Mesta, S. Shanbhag, M. Meheshwari, and S. C. Battacharyya, *Indian J. Chem.*, 7, 132(1969).

(12) B. E. Nielsen and T. O. Soine, J. Pharm. Sci., 56, 184(1967).

(13) R. E. Willette and T. O. Soine, *ibid.*, 51, 149(1962).

(14) E. Smith, N. Hosansky, W. G. Bywater, and E. E. Van Tamelen, J. Am. Chem. Soc., 79, 3534(1957).

ACKNOWLEDGMENTS AND ADDRESSES

Received July 17, 1975, from the Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455

Accepted for publication September 12, 1975.

* Present address: Division of Natural Sciences, State University of New York, College at Purchase, Purchase, NY 10577

[‡] Present address: Research Department, Commercial Solvents Corporation, Terre Haute, IN 47802

* To whom inquiries should be directed.